A methodological approach to incremental view
maintenance for optimizing SPARQL queries in Solid

Abstract

This contribution explores innovative strategies for efficient information retrieval in large-scale Solid
deployments through the development of incremental view maintenance techniques. Assuming a pivotal
role for web agents and aggregators in managing SPARQL queries within decentralized data architectures,
we propose the adaptation of established relational database methodologies, specifically the counting
algorithm and propagation rules, for the maintenance of materialized views in RDF (Resource Description
Framework) data settings. Our research critically assesses the applicability of these algorithms to RDF,
addressing the unique challenges posed by SPARQL and linked data’s graph nature. We demonstrate the
incremental maintainability of aggregation functions like COUNT, SUM, and AVG, while highlighting the
limitations for functions such as MIN, MAX, and SAMPLE. By formulating these methodologies using
SPARQL algebra, we set the stage for practical implementations that significantly enhance query response
times without necessitating full data re-computation. This approach not only underscores the feasibility
of applying relational database concepts to linked data but also sets a foundational framework for future
research aimed at optimizing data retrieval processes in Solid-based applications and ecosystems at
web-scale.
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1. Introduction

In large-scale Solid [1, 2] deployments, efficient information retrieval will be crucial. We adopt
the model of web agents, which can be seen as decentralized data processing entities [3]. One
important capability of such agents is responding to queries submitted to Solid pods. Queries
can be submitted by partners — parties engaging directly with solid pods, or by aggregators
— intermediary service providers that can be accessed by other aggregators or partners [4] .
SPARQL queries drive the information retrieval process in this decentralized data architecture.
In our research, we envisage both web agents and aggregators to maintain materialized views
to swiftly respond to SPARQL queries. Figure 1 provides a schematic overview of our setting, in
this case with three pods and agents providing their data to several agents and one aggregator.
In database design and operations generally, maintaining materialized views on the underlying
data is a key facilitator of efficient information retrieval, certainly so in decentralized models.
Materialized views allow to efficiently respond to repeated querying. Often, identical queries are
repeated over time to take modifications of the underlying data into account. View maintenance
is the approach to update views following changes in the underlying data. A baseline strategy
to update a view following a change in the data is to re-execute the query and recompute the
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Figure 1: Three pods together with their web agents which handle which trusted partners, such as the
aggregator in the illustration, can access which parts of the data. Web Agents provide views V; which
trusted partners can utilize.

view from scratch. In this work, we develop strategies to do this incrementally, avoiding full
re-computation where possible, by using the changes in the data only as opposed to the full
data set needed to compute the view. Our approach to incremental view maintenance in a
Solid setting is based on theory and algorithms established for relational database management
systems, which we will apply to linked data [5] in RDF (Resource Descroption Framework), the
data standard used in Solid [6].

2. Methods

We revisit methods known from the relational database literature and study how they can be
modified and adapted to our needs, to operate on RDF data.

First, we assess the counting algorithm [7] and its applicability in a SPARQL and linked data
setting. It was primarily developed to the maintenance of views containing aggregate functions
such as COUNT, SUM, AVG, MIN and MAX. The specific goal of this algorithm is to update the
view using only the data changes and not recomputing the entire view. The algorithm works
by keeping track of the count of tuples — or triples, for RDF data - that contribute to each value
in the view. Extending this algorithm from relational databases, what it was designed for, to
RDF requires handling forms of complexity that are characteristic of SPARQL and of the graph
nature of the data.

Second, we intend to rely on propagation rules, such as developed in [8] and later improved
in [9]. Propagation rules essentially express equivalences between a change in an entire view
and the changes within the view, based on the underlying changes in the data. Using such rules,
changes in the data can be rewritten efficiently as changes in the view, again avoiding the need
for a full re-computation.

We formulate the incremental view maintence issue as follows. Let D be an RDF dataset, and
Q a SPARQL query. An update to the dataset is written as AD. The original view based on the
query Q, Vo(D), is to be recomputed taking the change into account, giving rise to an updated
view Vo(D, AD). Incremental view maintenance aims to obtain an efficiently computable AV
such that Vo(D, AD) = V(D) + AVp(AD), avoiding the need to access the full data D again to
update the view.



3. Results

Before detailing algorithm specifics, we briefly reflect on the incremental maintainability of
certain views in the first place. In particular, we study the aggregator functions commonly used
in SPARQL, and note that the aggregation functions COUNT, SUM and AVG are incrementally
maintainable, while MIN, MAX and SAMPLE are not, at least not always. For example MAX:
when the query Q selects the maximum of some values in D, V(D) is the maximum value; if
AD entails the deletion of any value other than the maximum, the new maximum is equal to
the old one; however when the first maximum is deleted, a new one needs to be computed -
for which the complete data set is needed again. We provide proofs or counterexamples of the
common operators.

To investigate the algorithms mentioned in the previous section, we express SPARQL queries
in formal SPARQL algebra, allowing formal derivations and proofs, and serving as instructions
when implementing SPARQL query plans in practice.

A foundational algorithm for incremental view maintenance in relational database systems
is the counting algorithm [7]. We adapt this algorithm to work for RDF data. Now, counts
of triples must be kept and the required updates to views specified. We address a number of
issues. An important one, for example, is the handling of NULL values — a common concept
in relational databases. In RDF, or linked data more generally, NULL is not stated, rather, that
specific triple is simply not present. In SPARQL, selecting such data can be achieved using the
OPTIONAL function.

Propagation rules [8, 9] offer a fairly straightforward optimization recipe for incremental
view maintenance, once the rules are established and proven correct. We address this latter
aspect for RDF data by revisiting the rules for relational data and rewriting them for RDF. This
includes rules for differences, unions, outerjoins, semijoins, etc.

On the poster, these results are illustrated with worked examples.

4. Discussion

In the current research we are well underway of using elements of the counting algorithm
and propagation rules to be transferred to a linked data setting to render them useful for our
envisaged approach in a Solid model as sketched in Figure 1. Formulating these algorithms in
SPARQL algebra terms will allow us to move to an implementation quickly.

In the near future we will benchmark our incremental view maintenance scheme against
naive full re-computations, and to quantify the performance gains. Such implementations will
be required to run Solid-based applications and ecosystems at web-scale.
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