
Towards Distributed Intelligent Tutoring Systems
Based on User-owned Progress and Performance Data

Abstract
The use of recommendation engines to personalise students’ learning experiences can be beneficial by
providing them with exercises that are tailored to their knowledge. However, the use of these systems
often comes at a cost. Most learning or tutoring systems require the data to be stored locally within a
proprietary database, limiting the freedom of the learner as they move across different systems during
their learning journey. In addition, these systems might potentially cause additional stress, as the learner
might feel observed without knowing who has access to their learning progress and performance data.
We propose a solution to this problem by decentralising learning progress and performance data in
user-owned Solid Pods. We outline the proposed solution by describing how it might be applied to
an existing environment for programming education that already includes research on how to align
difficulty levels of exercises across different systems.
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1. Introduction

The use of Intelligent Tutoring Systems (ITS) to adapt the recommendation of exercises based
on individual learners has proven to be effective [1]. Evidence suggests that more personalised
learning leads to increased learner agency, self-reliance and motivation [2]. However, the move
towards smart learning systems is not without costs. Intelligent Tutoring Systems typically
require that all of the exercises are stored in one centralised system that is often also monitored
by teachers and persons who are responsible for ultimately grading the students. Previous
studies revealed that implementing electronic performance monitoring can result in lower job
satisfaction, increased stress levels, reduced autonomy, and it can further be perceived as a
violation of trust [3]. In ideal circumstances, the learning environments should also offer a safe
space for students to practise on problems they find interesting or challenging, without having
to worry about how they will be perceived by teachers. To give an example, a student might be
worried that the perception of the teacher might change if they are still shown to be struggling
with material from previous years.

In the following, we propose a solution to this problem based on the Solid specification
where (a) the same user progress can be used across multiple learning applications to provide a
smooth flow state and (b) a student can opt in to share progress with individual applications for
training the model, but without having to provide teachers access to their entire performance
for individual exercises. We discuss the solution by answering some open questions posed by
Malaise and Signer [4]. They proposed the Explorotron prototype for programming education.
In this prototype, there are multiple smaller sub-applications called study lenses, each taking

The 1st Solid Symposium Poster Session, co-located with the 2nd Solid Symposium, May 02 – 03, 2024, Leuven, Belgium
© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

https://creativecommons.org/licenses/by/4.0


a source code file and generating exercises based on certain difficulty levels matching the
PRIMM methodology [5]. While their tool offers the possibility to suggest learning experiences
based on logical progression through built-in study lenses, the authors conclude with a few
major challenges to overcome:

• Students can generate exercises from any source file, so generated content is never used by
other students, leading to a cold start problem that makes recommendations challenging.

• Students should be free to decide which data they want to share and with whom they
want to share it.

• Third-party developers should be able to contribute custom exercise generators (study
lenses) transparently—the same recommendations/profiling should work across the board.

2. Solution

For our demonstration, we assume that student modelling happens through the use of Bayesian
Knowledge Tracing (BKT) [6] which is a common approach in the design of Intelligent Tutoring
Systems. However, note that with some modifications, other approaches could also be supported.
BKT is a probabilistic model that requires four parameters to be fitted for each learning object
as illustrated in Figure 1.

• 𝑃(𝐿𝑡): The probability that the topic being covered by the learning object is mastered at
time 𝑡. A value 𝑃(𝐿0) has to be provided to indicate the chance the user knows the topic
before attempting any exercise. Note that the topics are defined as a combination of the
knowledge topic and the difficulty level as defined later in Section 2.1.

• 𝑃(𝑆): The probability that the user makes a slip, i.e. gets it wrong even though they know
the topic.

• 𝑃(𝐺): The probability that the user makes a lucky guess and gets the answer right even
though they do not know the topic.

• 𝑃(𝑇 ): The probability that the user actually learns the topic while performing this exercise.

Topic is mastered

Success Fail

Topic is not mastered

Success FailTopic & Difficulty

Figure 1: Example of the Bayesian Knowledge Tracing model per topic and difficulty pair

Based on these values, we can then calculate the updated probability that a topic (e.g. “Arrays”)
is mastered each time the user is presented with a new exercise about this topic (𝐿𝑡+1) based
on whether they succeeded or failed solving the exercise. It is important to note that all these
probabilities are exercise dependent and will as such not be shared across the applications
except for 𝑃(𝐿𝑡). This value is the probability that the user knows a topic, which can be shared
across any application as long as they are referring to the same topic.



We aim to store the result of every exercise the user performs within a personal data vault,
together with the calculated 𝑃(𝐿𝑡) for every topic and difficulty level pair as shown in Figure 2.
Developers of educational applications could then request limited-time access to the entries
of all of their users in order to fit their models, without the need to permanently own all the
data. Shared information, such as the 𝑃(𝐿𝑡), will further make it easier for other developers to
contribute their own extensions that provide exercise recommendations.
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Figure 2: Overview of individual apps
storing exercise results in a Solid Pod

<> a schema:ReplyAction; # A reply to a question
dct:created "2024-03-28T11:57"^^xsd:dateTime;
schema:agent <http://.../profile/card#me>;
# Exercise question
schema:parentItem [ a schema:Question;
schema:name "What is the output of ...?"@en;
schema:educationalLevel primm:Predict;
schema:eduQuestionType "Flashcard"@en;
foaf:topic dbr:Array;
foaf:agent <https://app1.org/>. # Creator

];
schema:result [ a schema:Answer; # User answer
schema:answerExplanation [ ... ];
schema:review [ a schema:Review;
# The grade of the answer (e.g. 5 out of 5)
schema:reviewRating 5; schema:bestRating 5.

]
].

Listing 1: Example reply on a question generated by app #1
using prefixes dbr [7], schema [8], foaf [9] and dct [10]

Users can already indicate their topics of interest in their Solid Pod using the topics of interest
predicate from the foaf vocabulary [9], which can aid educational recommendation systems
to provide exercises that interest the user. Together with data about the past performance, we
can create personalised learning paths for users based on their strengths and weaknesses from
multiple sources without creating any vendor lock-in and without claiming ownership of the
students’ data.
In addition, the progress of these exercises and topics can optionally be shared with an

educator or mentor as illustrated in Figure 2, allowing for personalised feedback and guidance
to further support a user’s learning journey. The fine-grained control over the data also allows
students to share the information on topics they are currently covering in class, while preventing
the need to share that they are still working on other topics that they do not want to share.

2.1. Exercises and Progress

Each topic has a set of exercises with their individual difficulty level. With our proposed solution
we use the existing PRIMM principles [5] to identify the five stages of difficulties for exercises.
These stages include the ability to predict the output of a piece of code, run a piece of code,



investigate a piece of code and answer some questions about its structure, modify a piece of
code so the behaviour changes to a new desired result and finally, make a similar piece of code
from scratch. Together, these five principles identify the logical progression of difficulty levels
with which to look at a piece of code from the perspective of a student. Listing 1 illustrates an
example exercise and the answer given to this exercise that includes the difficulty level1 using
the educationalLevel predicate.
A further extension of the architecture would allow third-party developers to share the

capabilities of their plugins with regards to what type of content their plugins could provide so
the recommendation engine can be a fully separate component querying all content providers
included by the user without it being centrally controlled by one individual.

<#progress_arrays_predict> a sosa:ObservableProperty ;
rdfs:label "Prediction progress"@en ; ssn:isPropertyOf <#me> ;
foaf:topic dbr:Array ; schema:educationalLevel primm:Predict .

<#1711623452> a sosa:Observation ; # P(L_(t+1))
sosa:usedProcedure dbr:Bayesian_Knowledge_Tracing ;
dct:created "2024-03-28T11:57"^^xsd:dateTime ;
foaf:agent <https://app1.org/> ; sosa:observedProperty <#progress_array> ;
sosa:hasResult [ qudt:floatPercentage "38.12"^^xsd:float ] .

<#1711537052> a sosa:Observation ; # P(L_t)
sosa:usedProcedure dbr:Bayesian_Knowledge_Tracing ;
dcterms:created "2024-03-27T11:57"^^xsd:dateTime ;
foaf:agent <https://app1.org/> ; sosa:observedProperty <#progress_array> ;
sosa:hasResult [ qudt:floatPercentage "25.0"^^xsd:float ] .

Listing 2: Multiple observations of user progress for a particular topic and difficulty level

Listing 2 shows multiple observations of user progress for a particular topic at a given
time (i.e. 𝑃(𝐿𝑡)). Each observation, described using the SOSA ontology [11, 12], is created by
an application. This progress is shared, allowing each educational application to use these
observations to determine the current knowledge on a topic.

3. Conclusions

In this paper, we analysed a use case of a digital learning platform that helps students to learn
programming but currently has some open challenges on how personalisation and interop-
erability with third-party developers might be achieved without taking away the learner’s
ownership of their data. We then proposed a novel solution to support those tasks by allowing
users to store all their exercise results in Solid Pods and giving them full control on how and
when applications can access this data. In this work, we assumed that both the users and
the application developers could be fully trusted. If more validation and authority is needed,
additional layers can be built on top of this system, for example by using a blockchain to verify
claims, as described in [13, 14].

1The primm: vocabulary represents a trivial vocabulary to describe the difficulty levels in programming exercises
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